Distinguishability of Infinite Groups and Graphs
نویسندگان
چکیده
منابع مشابه
Distinguishability of Infinite Groups and Graphs
The distinguishing number of a group G acting faithfully on a set V is the least number of colors needed to color the elements of V so that no non-identity element of the group preserves the coloring. The distinguishing number of a graph is the distinguishing number of its automorphism group acting on its vertex set. A connected graph Γ is said to have connectivity 1 if there exists a vertex α ...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولMagic labellings of infinite graphs over infinite groups
A total labelling of a graph over an abelian group is a bijection from the set of vertices and edges onto the set of group elements. A labelling can be used to define a weight for each edge and for each vertex of finite degree. A labelling is edge-magic if all the edges have the same weight and vertex-magic if all the vertices are finite degree and have the same weight. We exhibit magic labelli...
متن کاملBounding the Distinguishing Number of Infinite Graphs and Permutation Groups
A group of permutations G of a set V is k-distinguishable if there exists a partition of V into k cells such that only the identity permutation in G fixes setwise all of the cells of the partition. The least cardinal number k such that (G,V ) is k-distinguishable is its distinguishing number, D(G,V ). In particular, a graph Γ is k-distinguishable if its automorphism group Aut(Γ) satisfies D(Aut...
متن کاملTHE ORDER GRAPHS OF GROUPS
Let $G$ be a group. The order graph of $G$ is the (undirected)graph $Gamma(G)$,those whose vertices are non-trivial subgroups of $G$ and two distinctvertices $H$ and $K$ are adjacent if and only if either$o(H)|o(K)$ or $o(K)|o(H)$. In this paper, we investigate theinterplay between the group-theoretic properties of $G$ and thegraph-theoretic properties of $Gamma(G)$. For a finite group$G$, we s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2012
ISSN: 1077-8926
DOI: 10.37236/2283